МУЛЬТИ-МІМО СИСТЕМА И РЕЖИМЫ ЕЕ РАБОТЫ

Слюсар В.И., Масесов Н.А.

Научный руководитель: д.т.н., профессор Слюсар В.И.

Военный институт телекоммуникаций и информатизации Национального технического университета Украины «Киевский политехнический институт»,

кафедра военных телекоммуникационных транспортных систем и сетей ул. Зеньковская д.44, г. Полтава, 36012, Украина

Тел.: +3 80532 534218; e-mail: <u>swadim@inbox.ru</u>, <u>masesov@rambler.ru</u>

Abstract — Matrix record of the response of system multi-MIMO is offered, that allows to reduce a formal kind of processing of signals to methods which are already used in case of an estimation of alarm parameters in one measurement.

1. Введение

К современным беспроводным системам связи ставятся жесткие требования по обеспечению высокой пропускной способности и помехозащищенности. В таких условиях находит свое применение технология MIMO (Multiple Input Multiple Output), которая позволяет максимально использовать выделенный для работы частотный ресурс и передавать информацию по пространственно разнесенным каналам. Преимуществом технологии МIMO является возможность работы в условиях многолучевости среды распространения.

Система с тремя и более абонентами, в которой организуется связь с использованием технологии МІМО, называется мульти-МІМО системой. В режиме поочередного излучения сигналов абонентами при обработке в мульти-МІМО каналах связи можно использовать обычные методы декодирования. При одновременном выходе в эфир нескольких абонентов — следует применять новые алгоритмы обработки или известные схемы кодирования, но более высокой степени иерархии.

В докладе рассматриваются принципы построения и режимы работы системы мульти-МІМО, компактные матричные выражения откликов указанной системы, необходимые для формализации работы ее модели.

2. Основная часть

Для рассмотрения модели описания мульти-МІМО системы связи необходимо ввести ограничения и обозначения. Уточним, что рассматривается отдельная система МІМО, в которой осуществляется обработка сигналов нескольких разнесенных в пространстве МІМО систем. Основным условием при этом является стационарность среды распространения радиоволн на интервале времени с момента измерения передаточных характеристик (ПХ) канала МІМО до завершения передачи информационного блока.

Запишем матричные выражения отклика приемной цифровой антенной решетки (ЦАР) МІМО с двумя антенными элементами при работе с двумя абонентами. Абоненты также имеют ЦАР с двумя антенными элементами. Введем обозначения: $u_{i,j}$ — напряжения по выходу i-го приемного канала в j-й момент времени; $h_{klm,j}$ — ПХ канала МІМО между i-й антенной i-го абонента и i-й приемной антенной в i-й момент времени; i-й антенной i-го абонента; i-й излучается i-й антенной i-го абонента; i-й излучается i-й антенной i-го абонента; i-й момент времени. Тогда

система уравнений, описывающая отклик приемной ЦАР, будет иметь вид:

$$\begin{cases} u_{1,i} = h_{111,i}A_{12} + h_{121,i}A_{11} + h_{211,i}A_{22} + h_{221,i}A_{21} + n_{1,i}, \\ u_{1,i+1} = h_{111,i+1}A_{11} + h_{121,i+1}A_{12} + h_{211,i+1}A_{21} + h_{221,i+1}A_{22} + n_{1,i+1}, \\ u_{2,i} = h_{112,i}A_{12} + h_{122,i}A_{11} + h_{212,i}A_{22} + h_{222,i}A_{21} + n_{2,i}, \\ u_{2,i+1} = h_{112,i+1}A_{11} + h_{122,i+1}A_{12} + h_{212,i+1}A_{21} + h_{222,i+1}A_{22} + n_{2,i+1}. \end{cases}$$

Запишем систему (1) в матричном виде:

$$\begin{bmatrix} u_{1,i} \\ u_{1,i+1} \\ u_{2,i} \\ u_{2,i+1} \end{bmatrix} = \begin{bmatrix} h_{111,i} & h_{121,i} & h_{211,i} & h_{221,i} \\ h_{111,i+1} & h_{121,i+1} & h_{211,i+1} & h_{221,i+1} \\ h_{112,i} & h_{122,i} & h_{212,i} & h_{222,i} \\ h_{112,i+1} & h_{122,i+1} & h_{212,i+1} & h_{222,i+1} \end{bmatrix} \cdot \begin{bmatrix} A_{11} \\ A_{12} \\ A_{21} \\ A_{22} \end{bmatrix} + \begin{bmatrix} n_{1,i} \\ n_{1,i+1} \\ n_{2,i} \\ n_{2,i+1} \end{bmatrix} . (2)$$

или компактно

$$U = H \cdot A + N. \tag{3}$$

В выражении (2) строки соответствуют временным отсчетам, а блоки матрицы H – номеру абонента, то есть в первой строке матрицы H в левом блоке стоят ПХ первой и второй антенн первого абонента для первого приемного канала ЦАР в первом временном отсчете.

Для применения различных алгоритмов кодирования [1] необходимо изменить только матрицу H. например, для кодирования по методу "магического квадрата" 2 на 2 матрица H будет иметь вид:

$$H = \begin{bmatrix} h_{121,i} & h_{111,i} & h_{221,i} & h_{211,i} \\ h_{111,i+1} & h_{121,i+1} & h_{211,i+1} & h_{221,i+1} \\ h_{122,i} & h_{112,i} & h_{222,i} & h_{212,i} \\ h_{112,i+1} & h_{122,i+1} & h_{212,i+1} & h_{222,i+1} \end{bmatrix}$$

При этом метод демодуляции не будет зависеть от выбранного алгоритма кодирования, что обобщает формулы обработки сигналов на выходах приемных каналов абонента.

3. Заключение

Таким образом, предложена компактная матричная запись отклика описанной системы мульти-МІМО. Представленный способ формализации модели позволяет свести формальный вид обработки сигналов к методам, которые уже используются в случае оценки сигнальных параметров в одном измерении. Дальнейшие исследования планируется направить на интеграцию дополнительного стробирования отсчетов АЦП, формирования вторичных пространственных каналов приемной ЦАР и передачи N-OFDM сигналов с предложенной моделью мульти-МІМО системы.

4. Список литературы

[1] Слюсар В.И. Системы MIMO: принципи построения и обработка сигналов // Электроника: наука, технология, бизнес. - 2005. - № 10. - С. 52-59.